Разрезание ленты мебиуса. Что такое лента Мёбиуса и зачем ее надо резать? Геометрия и математика

Лента Мёбиуса: один из самых необычных объектов с очень странными свойствами

Разрезание ленты мебиуса. Что такое лента Мёбиуса и зачем ее надо резать? Геометрия и математика

Одним из самых простых и одновременно самых сложных и странных объектов является лента Мёбиуса. Несмотря на всю неординарность данной фигуры её с легкостью можно сделать самостоятельно и провести все эксперименты, которые описываются в этой статье.

Источник изображения: ozgesoysal.com

Лента Мёбиуса – простейшая неориентируемая поверхность, которая является односторонней в трёхмерном пространстве. Её часто называют ещё поверхностью Мёбиуса и относят к непрерывным (топологическим) объектам.

Согласно легенде, немецкий астроном, математик и механик Август Фердинанд Мёбиус открыл этот объект после того, как служанка, работающая в его доме, сшила тканевую ленту в кольцо, перевернув по невнимательности один из ее концов. Увидев результат, вместо того, чтобы отругать незадачливую девушку Мёбиус произнес: «Ай да, Марта! Девочка не так уж глупа. Ведь это же односторонняя кольцевая поверхность. У ленточки нет изнанки!»

Август Фердинанд Мёбиус. Источник изображения: wikimedia.org

Изучив свойства ленты, Мёбиус написал о ней статью и отправил в Парижскую академию наук, но ее публикации так и не дождался. Его материалы были опубликованы уже после смерти математика, а необычная топологическая поверхность была названа в его честь.

Сделать ленту Мёбиуса очень просто: возьмите ленту ABCD, а после сверните таким образом, чтобы точки A и D соединились с B и C.

Изготовление Ленты Мёбиуса. Источник изображения: dollartree.info

Получается обычная на первый взгляд фигура, которая имеет очень интересные свойства.

Односторонность

Все мы привыкли к тому, что у поверхностей всех объектов, с которыми мы сталкиваемся в реальном мире (например, листок бумаги) две стороны. Но поверхность ленты Мёбиуса односторонняя. Это легко можно проверить путем закрашивания ленты. Если взять карандаш и начать окрашивать ленту с любого места, не переворачивая, то в конечном итоге, лента окажется полностью закрашена.

«Если кто-то попробует раскрасить только одну сторону поверхности ленты Мёбиуса, то пусть лучше сразу погрузит ее в ведро с краской», Р. Курант и Г. Роббинс, «Что такое математика?»

Поверхность ленты Мёбиуса непрерывная

Непрерывность поверхности ленты Мёбиуса. Источник изображения:

Это легко проверяется следующим образом: если в любом месте
на ленте поставить точку, то ее можно соединить с любой другой точкой на поверхности ленты, не пресекая края. Таким образом, получается, что поверхность этого объекта непрерывная.

У ленты Мёбиуса нет ориентированности

Если бы вы смогли пройти через всю ленту Мёбиуса, то в момент возвращения в начальную точку путешествия вы бы превратились в зеркальное отражение самого себя.

Если ленту разрезать вдоль посередине, то в таком случае получается всего одна лента, хотя логика говорит о том, что их должно быть две, а если разрезать, отступив от края на треть ширины ленты, то получится уже два кольца сцепленных вместе – маленькое и большое. Сделав затем продольный разрез малого кольца посередине, в итоге, получим два переплетенных кольца одинаковых в размере, но разных по ширине.

Разрезание ленты Мёбиуса. Источник изображения:wikimedia.org

Практическое использование ленты Мёбиуса

Уже существует довольно много изобретений, основанных на свойствах этого необычного топологического объекта.

Например, красящая лента в матричных принтерах, скрученная в ленту Мёбиуса, служит гораздо дольше, поскольку износ в этом случае происходит равномерно по всей ее поверхности.

А скрученные в форме этого геометрического объекта лопасти кухонного миксера или бетоносмесителя снижают энергозатраты на 20%, и при этом качество полученной смеси улучшается.

Существует гипотеза, что полимер ДНК, представляющий собой двойную спираль, является фрагментом ленты Мёбиуса и по этой причине код ДНК так труден для расшифровки и понимания.

Некоторые физики, говорят о том, что оптические эффекты основаны на тех же свойствах, которыми обладает этот парадоксальный объект, так наше отражение в зеркале – это частный случай, одного из свойств ленты Мёбиуса.

Еще одна гипотеза, связанная этим математическим объектом – это то, что сама наша Вселенная, возможно, замкнута в такую ленту и у нее есть своя зеркальная копия. Поскольку, если все время двигаться в одном направлении по ленте Мёбиуса, то, в конце концов, окажемся в начальной точке нашего путешествия, но уже в своем зеркальном отображении.

Загадочная бутылка Клейна

На основе ленты Мёбиуса существует ещё одна удивительная фигура – бутылка Клейна. Она представляет с собой бутылку, у которой на дне есть отверстие. Горлышко бутылки удлинено и загнуто, проходя в одну из стенок самой бутылке.

Бутылка Клейна. Источник изображения:www.ideegreen.it

Такую фигуру невозможно воспроизвести в обычном трехмерном пространстве, ведь горлышко не должно касаться стенки бутылки и соединено с отверстием в ее дне. Таким образом, получается поверхность, которая имеет всего одну сторону. Бутылка Клейна и лента Мёбиуса до сих пор привлекает внимание учёных, а также писателей.

А. Дейч в одном из своих рассказов писал о том, как однажды в Нью-Йоркском метро пути пересеклись и весь метрополитен стал напоминать ленту Мёбиуса, а электрички, идущие по путям, стали пропадать, вновь появляясь, только спустя несколько месяцев.

В книге Александра Митча «Игра в поддавки» герои попадают в пространство, которое напоминает бутылку Клейна.

Мир до сих пор остаётся для нас огромной загадкой, и кто знает, какие ещё причуды пространства откроют учёные в ближайшем будущем.

Источник: https://zen.yandex.ru/media/id/5af18cff8c8be36795a8504e/5c0cca8d44c73500ae939655

Лента Мебиуса — загадка современности

Разрезание ленты мебиуса. Что такое лента Мёбиуса и зачем ее надо резать? Геометрия и математика

Существуют научные знания и явления, которые привносят в обыденность нашей жизни тайну и загадку. Лента Мебиуса относится к ним в полной мере.

Современная математика замечательно описывает при помощи формул все ее свойства и особенности. А вот обычные люди, слабо разбирающиеся в топонимике и других геометрических премудростях, практически ежедневно сталкиваются с предметами, изготовленными по ее образу и подобию, даже не подозревая об этом.

Что это такое? Кто и когда ее открыл?

Лента Мебиуса, которую также называют петлей, поверхностью или листом, – это объект изучения такой математической дисциплины, как топология, исследующей общие свойства фигур, сохраняющихся при таких непрерывных преобразованиях, как скручивание, растяжение, сжатие, изгибание и других, не связанных с нарушением целостности.

Удивительной и неповторимой особенностью такой ленты является то, что он имеет всего одну сторону и край и никак не связаны с ее расположением в пространстве.

Лист Мебиуса является топологическим, то есть непрерывным объектом с простейшей односторонней поверхностью с границей в обычном Евклидовом пространстве (3-мерном), где возможно из одной точки такой поверхности, не пересекая края, попасть в любую другую.

Такой непростой объект, как лента Мебиуса, был и открыт довольно необычно. Прежде всего отметим, что два математика, абсолютно не связанные между собой в исследованиях, открыли ее одновременно – в 1858 году. Еще одним интересным фактом является то, что оба этих ученых в разное время являлись учениками одного и того же великого математика — Иоганна Карла Фридриха Гаусса.

Так, вплоть до 1858 года считалось, что любая поверхность обязана иметь две стороны. Однако Иоганн Бенедикт Листинг и Август Фердинанд Мебиус открыли геометрический объект, у которого была всего одна сторона, и описывают его свойства.

Лента была названа в честь Мебиуса, а вот отцом-основателем «резиновой геометрии» топологи считают Листинга и его труд «Предварительные исследования по топологии».

Свойства

Ленте Мебиуса присущи следующие свойства, не меняющиеся при ее сжимании, разрезании вдоль или сминании:

1. Наличие одной стороны. А. Мебиус в своем труде «Об объеме многогранников» описал геометрическую поверхность, названную затем в его честь, обладающую всего одной стороной.

Проверить это довольно просто: берем ленту или лист Мебиуса и стараемся закрасить внутреннюю сторону одним цветом, а внешнюю – другим.

Не суть важно, в каком месте и направлении было начато окрашивание, вся фигура будет закрашена одним цветом.

2. Непрерывность выражается в том, что любую точку этой геометрической фигуры можно соединить с любой другой ее точкой, не пересекая границы поверхности Мебиуса.

3. Связность, или двухмерность, заключается в том, что при разрезании ленты вдоль, из нее не получится несколько разных фигур, и она остается цельной.

4. В ней отсутствует такое важное свойство, как ориентированность. Это значит, что человек, идущий по этой фигуре, вернется к началу своего пути, но только в зеркальном отражении самого себя. Таким образом, бесконечная лента Мебиуса может привести к вечному путешествию.

5. Особый хроматический номер, показывающий, какое максимально возможное число областей на поверхности Мебиуса, можно создать так, чтобы у любой из них была общая граница со всеми другими. Лента Мебиуса имеет хроматический номер – 6, а вот кольцо из бумаги – 5.

Научное использование

Сегодня лист Мебиуса и его свойства широко применяются в науке, служа основой для построения новых гипотез и теорий, проведения исследований и экспериментов, создания новых механизмов и устройств.

Так, существует гипотеза, согласно которой Вселенная — это огромнейшая петля Мебиуса. Косвенно об этом свидетельствует и теория относительности Эйнштейна, согласно которой даже полетевший прямо корабль может вернуться в ту же временную и пространственную точку, откуда стартовал.

Другая теория рассматривает ДНК как часть поверхности Мебиуса, что объясняет сложности с прочтением и расшифровкой генетического кода. Кроме всего прочего, такая структура дает логичное объяснение биологической смерти – замкнутая на самой себе спираль приводит к самоуничтожению объекта.

По мнению физиков, многие оптические законы основываются на свойствах листа Мебиуса. Так, например, зеркальное отражение – это особый перенос во времени и человек видит перед собой своего зеркального двойника.

Реализация на практике

В различных отраслях промышленности лента Мебиуса применение нашла уже давно. Великий изобретатель Никола Тесла в начале века изобрел резистор Мебиуса, состоящий из двух скрученных на 1800 проводящих поверхностей, который может противостоять потоку электрического тока без создания электромагнитных помех.

На основе исследований поверхности ленты Мебиуса и ее свойств было создано множество устройств и приборов. Ее форму повторяют при создании полосы ленточного конвейера и красящей ленты в печатных устройствах, абразивных ремней для заточки инструментов и автоматической передачи. Это позволяет значительно увеличить срок их службы, так как изнашивание происходит более равномерно.

Не так давно удивительные особенности листа Мебиуса позволили создать пружину, которая, в отличие от обычных, срабатывающих в противоположном направлении, не меняет направление срабатывания. Применяется она в стабилизаторе рулевого привода штурвала, обеспечивая возврат рулевого колеса в исходное положение.

Кроме того, знак лента Мебиуса используется в разнообразных торговых марках и логотипах. Самый известный из них – это международный символ вторичной переработки. Его проставляют на упаковках товаров либо пригодных для последующей переработки, либо сделанных из переработанных ресурсов.

Источник творческого вдохновения

Лента Мебиуса и ее свойства легли в основу творчества многих художников, писателей, скульпторов и кинематографистов. Самый известный художник, использовавший в таких своих работах, как «Лента Мебиуса II (Красные муравьи)», «Всадники» и «Узлы», ленту и ее особенности — Мауриц Корнелис Эшер.

Листы Мебиуса, или, как их еще называют, поверхности минимальной энергии, стали источником вдохновения для математических художников и скульпторов, например, Брента Коллинза или Макса Билла. Самый известный памятник ленте Мебиуса установлен у входа в вашингтонский Музей истории и техники.

Русские художники также не остались в стороне от этой темы и создали свои работы. Скульптуры «Лента Мебиуса» установлены в Москве и Екатеринбурге.

Литература и топология

Необычные свойства поверхностей Мебиуса вдохновили многих писателей на создание фантастических и сюрреалистических произведений. Петля Мебиуса играет важную роль в романе Р. Желязны «Двери в песке» и служит как средство перемещения сквозь пространство и время для главного героя романа «Некроскоп» Б. Ламли

.

Фигурирует она и в рассказах «Стена темноты» Артура Кларка, «На ленте Мебиуса» М. Клифтона и «Лист Мебиус» А. Дж. Дейча. По мотивам последнего режиссером Густаво Москера был снята фантастическая кинокартина «Мебиус».

Делаем сами, своими руками!

Если вас заинтересовала лента Мебиуса, как сделать ее модель, вам подскажет небольшая инструкция:

1. Для изготовления ее модели потребуются:

– лист обычной бумаги;

– ножницы;

– линейка.

2. Отрезаем полосу от листа бумаги так, чтобы ее ширина была в 5-6 раз меньше длины.

3. Полученную бумажную полоску раскладываем на ровной поверхности. Один конец придерживаем рукой, а другой поворачиваем на 1800 так, чтобы полоса перекрутилась и изнанка стала лицевой стороной.

4. Склеиваем концы перекрученной полосы так, как показано на рисунке.

Лента Мебиуса готова.

5. Возьмите ручку или маркер и посередине ленты начните рисовать дорожку. Если вы сделали все правильно, то вернетесь в ту же точку, откуда начали чертить линию.

Для того чтобы получить наглядное подтверждение тому, что лента Мебиуса – односторонний объект, карандашом или ручкой попробуйте закрасить какую-либо ее сторону. Через некоторое время вы увидите, что закрасили ее полностью.опубликовано econet.ru

Бударина Светлана

Источник: https://econet.ru/articles/67911-lenta-mebiusa-zagadka-sovremennosti

Юрист-эксперт
Добавить комментарий